Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(45): 15535-15540, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36332202

RESUMO

Thin-film pH electrodes on thermoplastic substrates can be subjected to γ-radiation (up to 45 kGy) without loss of stability or sensing performance, with important ramifications for monitoring analytes in sterile environments. pH-sensing membranes composed of polyvinyl chloride (PVC), trioctyl trimellitate (TOTM), and a standard hydrogen ionophore were cast onto screen-printed carbon electrodes with exfoliated graphene as a solid contact. Irradiated thin-film electrodes were conditioned in phosphate buffers and monitored for up to 3 months for changes in voltage readout and pH sensitivity, relative to untreated controls. The sensitivities of both irradiated and control electrodes were consistently Nernstian over a 100 day window, with both types exhibiting logarithmic voltage decays but in opposite directions. The γ-irradiated electrodes had excellent long-term stability with quasi-linear voltage drifts of +0.28 mV (∼0.005 pH) per day. Voltage readouts from sterilized thin-film electrodes in cell culture media could be converted by single-point calibration into pH values that fell within 0.07 units relative to a commercial pH meter (calibrated daily).


Assuntos
Grafite , Cloreto de Polivinila , Concentração de Íons de Hidrogênio , Eletrodos , Carbono
2.
IEEE Trans Biomed Eng ; 69(1): 96-107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34101580

RESUMO

Traditional Potentiometric Ion-selective Electrodes (ISE) are widely used in industrial and clinical settings. The simplicity and small footprint of ISE have encouraged their recent adoption as wearable/implantable sensors for personalized healthcare and precision agriculture, creating a new set of unique challenges absent in traditional ISE. In this paper, we develop a fundamental physics-based model to describe both steady-state and transient responses of ISE relevant for wearable/implantable sensors. The model is encapsulated in a "generalized Nernst formula" that explicitly accounts for the analyte density, time-dynamics of signal transduction, ion-selective membrane thickness, and other sensor parameters. The formula is validated numerically by self-consistent modeling of multispecies ion-transport and experimentally by interpreting the time dynamics and thickness dependence of thin-film solid-contact and graphene-based ISE sensors for measuring soil nitrate concentration. These fundamental results will support the accelerated development of ISE for wearable/implantable applications.


Assuntos
Eletrodos Seletivos de Íons , Dispositivos Eletrônicos Vestíveis , Potenciometria
3.
ACS Appl Mater Interfaces ; 13(9): 11369-11384, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33625223

RESUMO

The inkjet printing of metal electrodes on polymer films is a desirable manufacturing process due to its simplicity but is limited by the lack of thermal stability and serious delaminating flaws in various aqueous and organic solutions. Kapton, adopted worldwide due to its superior thermal durability, allows the high-temperature sintering of nanoparticle-based metal inks. By carefully selecting inks (Ag and Au) and Kapton substrates (Kapton HN films with a thickness of 135 µm and a thermal resistance of up to 400 °C) with optimal printing parameters and simplified post-treatments (sintering), outstanding film integrity, thermal stability, and antidelaminating features were obtained in both aqueous and organic solutions without any pretreatment strategy (surface modification). These films were applied in four novel devices: a solid-state ion-selective (IS) nitrate (NO3-) sensor, a single-stranded DNA (ssDNA)-based mercury (Hg2+) aptasensor, a low-cost protein printed circuit board (PCB) sensor, and a long-lasting organic thin-film transistor (OTFT). The IS NO3- sensor displayed a linear sensitivity range between 10-4.5 and 10-1 M (r2 = 0.9912), with a limit of detection of 2 ppm for NO3-. The Hg2+ sensor exhibited a linear correlation (r2 = 0.8806) between the change in the transfer resistance (RCT) and the increasing concentration of Hg2+. The protein PCB sensor provided a label-free method for protein detection. Finally, the OTFT demonstrated stable performance, with mobility values in the linear (µlin) and saturation (µsat) regimes of 0.0083 ± 0.0026 and 0.0237 ± 0.0079 cm2 V-1 S-1, respectively, and a threshold voltage (Vth) of -6.75 ± 3.89 V.


Assuntos
Imidas/química , Mercúrio/análise , Nitratos/análise , Polímeros/química , Proteínas/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Periféricos de Computador , DNA/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Tinta , Limite de Detecção , Prata/química , Transistores Eletrônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...